Third Edition of Programming Textbook

We have just published the third edition of the textbook on programming with MATLAB.   It is available for purchase at http://www.lulu.com/shop/autar-kaw-and-benjamin-rigsby-and-ismet-handzic-and-daniel-miller/introduction-to-programming-concepts-with-matlab-third-edition/paperback/product-24333322.html

The book is intended for an introductory course in programming in STEM (science, technology, engineering, and mathematics) fields while using MATLAB as the programming language. MATLAB is a popular computational software package used in universities and industries alike.

This textbook differentiates itself from others in two specific ways.

      1. The textbook is suitable for the many engineering departments throughout the nation that no longer teach a 3-credit hour programming course. They weave programming and mathematical software packages such as MATLAB in courses such as Foundations of Engineering, Freshmen Design, Modeling of Systems, Engineering Analysis, Numerical Methods, etc. This book is highly suitable for such audiences. To achieve these goals and make the access far-reaching, we have been deliberate in keeping the lessons short in length so that instructors can easily choose the course content in a modular way.
      2. The textbook is a stand-alone resource for learning programming where the lectures complement the textbook rather than vice versa. This is because of the reason above where in-classroom time is truncated, and therefore students need to be more self-taught. For this reason, we have been meticulous when selecting and organizing the textbook content to include fundamental and application programming problems that prepare students well for other problems they will solve in academia and industry.

The book has nine modules which have been each broken down by lessons. There are 42 lessons in all and depending on the learning outcomes of the course, an instructor can choose to assign only necessary lessons. Modules 1-3 focus on MATLAB and programming basics like the MATLAB program interface, programming variables, different types of data, debugging, plotting, and applications to science and engineering problems. In Module 4, we show the use of MATLAB for basic mathematical procedures learned in the engineering courses including nonlinear equations, integration, differentiation, simultaneous linear equations, interpolation, regression, and ordinary differential equations. In Modules 5-8, the user is introduced to basic programming concepts of conditional statements, repetition (loops), and custom functions. In Module 9, program input/output is shown with writing to and reading from external files as well as navigating directories with MATLAB. Important appendices include a primer on matrix algebra, a collection of mini-projects, and a introduction to animating plots in MATLAB. Appendix A provides a primer on matrix algebra. Appendix B contains a set of mini-projects. Appendix C demonstrates how to make animated plots in MATLAB.

Each lesson contains screenshots of actual MATLAB programs that are used to help illustrate the concepts presented. More than 120 complete programs are shown throughout this book to demonstrate to the reader how to use programming concepts. The book is written in a USA-Today style question-answer format for a quick grasp of the concepts.

The purpose of this book is to provide the reader with a firm basic understanding of MATLAB syntax and fundamental programming concepts. Each lesson contains MATLAB programs that are used to help illustrate the concepts presented. By no means do the authors claim to present every MATLAB command, function, application, or programming concept in existence.

The program to find the determinant of matrix

Here is the MATLAB program to find the determinant of a nxn matrix by the cofactor method.  I had to develop a separate function for each size of the matrix.  I may be wrong about having to do that – is there a single function that can be written to find the determinant of any nxn matrix using the cofactor method?

The mfile can be downloaded here.   Try the program for a 10×10 matrix – it took about 6 seconds of CPU time on my PC.  A 12×12 matrix determinant would take about 13 minutes of CPU time.  I stopped at a 12×12 matrix.  You can either write a function or generate the function via a program for matrices of 13×13 order and higher.

Contents

Finding the determinant of a matrix using the cofactor method

and comparing the CPU time with MATLAB det function

clc
clear all
format long

% n=Size of matrix
n=6;
% Choosing a matrix of nxn size with random numbers
A=rand(n,n);

% Calculating cputime by cofactor method
tbegin=cputime;
detval=det6(A);
TimeCrammer=cputime-tbegin;

% Calculating cputime by MATLAB det function
tbegin=cputime;
MatlabDet=det(A);
TimeMatlab=vpa(cputime-tbegin,32);

% Printing the times
fprintf('Size of matrix is %gx%g \n',n,n)
fprintf('Determinant by cofactor method = %g \n', detval)
fprintf('Determinant by Matlab function = %g \n', MatlabDet)
fprintf('Approximate CPU time taken by cofactor method = %g seconds\n',TimeCrammer)
fprintf('Approximate CPU time taken by MATLAB function = %e seconds\n',TimeMatlab)

Individual functions for determinant of a nxn matrix

function detvalue=det2(A)
detvalue=A(1,1)*A(2,2)-A(1,2)*A(2,1);
end

function detvalue=det3(A)
n=3;
detvalue=0;
for j=1:1:n
    detvalue=detvalue+(-1)^(j+1)*A(1,j)*det2(A(2:n,[1:j-1 j+1:n]));
end
end

function detvalue=det4(A)
n=4;
detvalue=0;
for j=1:1:n
    detvalue=detvalue+(-1)^(j+1)*A(1,j)*det3(A(2:n,[1:j-1 j+1:n]));
end
end

function detvalue=det5(A)
n=5;
detvalue=0;
for j=1:1:n
    detvalue=detvalue+(-1)^(j+1)*A(1,j)*det4(A(2:n,[1:j-1 j+1:n]));
end
end

function detvalue=det6(A)
n=6;
detvalue=0;
for j=1:1:n
    detvalue=detvalue+(-1)^(j+1)*A(1,j)*det5(A(2:n,[1:j-1 j+1:n]));
end
end

function detvalue=det7(A)
n=7;
detvalue=0;
for j=1:1:n
    detvalue=detvalue+(-1)^(j+1)*A(1,j)*det6(A(2:n,[1:j-1 j+1:n]));
end
end
function detvalue=det8(A)
n=8;
detvalue=0;
for j=1:1:n
    detvalue=detvalue+(-1)^(j+1)*A(1,j)*det7(A(2:n,[1:j-1 j+1:n]));
end
end

function detvalue=det9(A)
n=9;
detvalue=0;
for j=1:1:n
    detvalue=detvalue+(-1)^(j+1)*A(1,j)*det8(A(2:n,[1:j-1 j+1:n]));
end
end

function detvalue=det10(A)
n=10;
detvalue=0;
for j=1:1:n
    detvalue=detvalue+(-1)^(j+1)*A(1,j)*det9(A(2:n,[1:j-1 j+1:n]));
end
end

function detvalue=det11(A)
n=11;
detvalue=0;
for j=1:1:n
    detvalue=detvalue+(-1)^(j+1)*A(1,j)*det10(A(2:n,[1:j-1 j+1:n]));
end
end

function detvalue=det12(A)
n=12;
detvalue=0;
for j=1:1:n
    detvalue=detvalue+(-1)^(j+1)*A(1,j)*det11(A(2:n,[1:j-1 j+1:n]));
end
end
Size of matrix is 6x6 
Determinant by cofactor method = -0.0431 
Determinant by Matlab function = -0.0431 
Approximate CPU time taken by cofactor method = 0.140625 seconds
Approximate CPU time taken by MATLAB function = 1.562500e-02 seconds

The above mfile can be downloaded here.


This post is brought to you by