The continue statement in MATLAB

The continue statement in MATLAB is used to pass control to the next iteration in for and while statements.  Let’s suppose someone wants to find and print the value of k^2-50 for all integers in [-10,10] domain.  The mfile for that is given below.

% For integers k=-10,-9,….,9,10,
% the function k^2-50 will take positive as
% well as negative values. 
%For example, for k=-9, k^2-50=31; for k=1,
% k^2-50=-49; for k=8, k^2-50=14.
% The loop below will calculate values of k^2-50 for
% all values of requested k.
for k=-10:1:10
    val=k^2-50;
fprintf(‘\n k=%g  val=%g’,k,val)
end

___________________________________________________________

Let’s suppose now you are asked to calculate and print value of k^2-50 for all integers in [-10,10] domain but only if (k^2-50) is positive.

% The loop below will calculate and print values of k^2-50
% for all values of the requested k
% for which k^2-50 is positive.
for k=-10:1:10
    if (k^2-50<0)
        continue;
    end
    val=k^2-50;
    fprintf(‘\n k=%g  val=%g’,k,val)
end

____________________________________________________________

Can you do what you did above using the while statement.  Yes, the MATLAB code is given below.

% Equivalent in while
% The loop below will calculate values of k^2-50
% for all values of the requested k for which k^2-50 is positive.
k=-10;
while (k<=10)
    if (k^2-50>0)
        val=k^2-50;
        fprintf(‘\n k=%g  val=%g’,k,val)
    end
k=k+1;
end

_______________________________________________________

This post is brought to you by Holistic Numerical Methods: Numerical Methods for the STEM undergraduate at http://nm.mathforcollege.com, the textbook on Numerical Methods with Applications available from the lulu storefront, and the YouTube video lectures available at http://nm.mathforcollege.com/videos and http://www.youtube.com/numericalmethodsguy

Subscribe to the blog via a reader or email to stay updated with this blog. Let the information follow you.

How do I solve simultaneous linear equations given in equation form?

Many students ask me how do I do this or that in MATLAB.  So I thought why not have a small series of my next few blogs do that.  In this blog, I show you how to solve simultaneous linear equations given in equation form.

  • The MATLAB program link is here.
  • The HTML version of the MATLAB program is here.
  • DO NOT COPY AND PASTE THE PROGRAM BELOW BECAUSE THE SINGLE QUOTES DO NOT TRANSLATE TO THE CORRECT SINGLE QUOTES IN MATLAB EDITOR.  DOWNLOAD THE MATLAB PROGRAM INSTEAD

%% HOW DO I DO THAT IN MATLAB SERIES?
% In this series, I am answering questions that students have asked
% me about MATLAB.  Most of the questions relate to a mathematical
% procedure.

%% TOPIC
% How do I solve a set of simultaneous linear equations
% given in equation form?

%% SUMMARY

% Language : Matlab 2008a;
% Authors : Autar Kaw;
% Mfile available at
% http://nm.mathforcollege.com/blog/sle_equations.m;
% Last Revised : August 22, 2009;
% Abstract: This program shows you how to solve a set of
%     simultaneous linear equations given in equation form?
%           .
clc
clear all
clf

%% INTRODUCTION

disp(‘ABSTRACT’)
disp(‘   This program shows you how to solve a’)
disp(‘   set of simultaneous linear equations given in equation form’)
disp(‘ ‘)
disp(‘AUTHOR’)
disp(‘   Autar K Kaw of http://autarkaw.wordpress.com’)
disp(‘ ‘)
disp(‘MFILE SOURCE’)
disp(‘   http://nm.mathforcollege.com/blog/sle_equations.m’)
disp(‘ ‘)
disp(‘LAST REVISED’)
disp(‘   August 22, 2009’)
disp(‘ ‘)

%% INPUTS
% Enter the equations
eqn1=’12*a+23*b+39*c=29′;
eqn2=’13*a+17*b+19*c=37′;
eqn3=’21*a+23*b+29*c=59’;
%% DISPLAYING INPUTS
disp(‘  ‘)
disp(‘INPUTS’)
disp(‘________________________’)
disp(‘Equations’)
disp(‘________________________’)
disp(eqn1)
disp(eqn2)
disp(eqn3)

%% THE CODE
% The solution
X=solve(eqn1,eqn2,eqn3);
% Assigning the output
a=double(X.a);
b=double(X.b);
c=double(X.c);
%% DISPLAYING OUTPUTS
disp(‘  ‘)
disp(‘OUTPUTS’)
disp(‘________________________’)
disp(‘Solution Vector’)
disp(‘________________________’)
fprintf(‘\nValue of a= %g’,a)
fprintf(‘\nValue of b= %g’,b)
fprintf(‘\nValue of c= %g’,c)
disp(‘  ‘)
disp(‘________________________’)

This post is brought to you by Holistic Numerical Methods: Numerical Methods for the STEM undergraduate at http://nm.mathforcollege.com, the textbook on Numerical Methods with Applications available from the lulu storefront, and the YouTube video lectures available at http://nm.mathforcollege.com/videos and http://www.youtube.com/numericalmethodsguy

Subscribe to the blog via a reader or email to stay updated with this blog. Let the information follow you.

How do I do polynomial regression in MATLAB?

Many students ask me how do I do this or that in MATLAB.  So I thought why not have a small series of my next few blogs do that.  In this blog, I show you how to do polynomial regression.

  • The MATLAB program link is here.
  • The HTML version of the MATLAB program is here.
  • DO NOT COPY AND PASTE THE PROGRAM BELOW BECAUSE THE SINGLE QUOTES MAY NOT TRANSLATE TO THE CORRECT SINGLE QUOTES IN MATLAB EDITOR OR IT MAY NOT PASTE HARD RETURNS.  DOWNLOAD THE MATLAB PROGRAM DIRECTLY INSTEAD
%% HOW DO I DO THAT IN MATLAB SERIES?
% In this series, I am answering questions that students have asked
% me about MATLAB.  Most of the questions relate to a mathematical
% procedure.

%% TOPIC
% How do I do polynomial regression?

%% SUMMARY

% Language : Matlab 2008a;
% Authors : Autar Kaw;
% Mfile available at
% http://nm.mathforcollege.com/blog/regression_polynomial.m;
% Last Revised : August 3, 2009;
% Abstract: This program shows you how to do polynomial regression?
%           .
clc
clear all
clf

%% INTRODUCTION

disp('ABSTRACT')
disp('   This program shows you how to do polynomial regression')
disp(' ')
disp('AUTHOR')
disp('   Autar K Kaw of http://autarkaw.wordpress.com')
disp(' ')
disp('MFILE SOURCE')
disp('   http://nm.mathforcollege.com/blog/regression_polynomial.m')
disp(' ')
disp('LAST REVISED')
disp('   August 3, 2009')
disp(' ')

%% INPUTS
% y vs x data to regress
% x data
x=[-340 -280 -200 -120 -40 40 80];
% ydata
y=[2.45  3.33 4.30 5.09 5.72 6.24 6.47];
% Where do you want to find the values at
xin=[-300 -100 20  125];
%% DISPLAYING INPUTS
disp('  ')
disp('INPUTS')
disp('________________________')
disp('     x         y  ')
disp('________________________')
dataval=[x;y]';
disp(dataval)
disp('________________________')
disp('   ')
disp('The x values where you want to predict the y values')
dataval=[xin]';
disp(dataval)
disp('________________________')
disp('  ')

%% THE CODE
% Using polyfit to conduct polynomial regression to a polynomial of order 1
pp=polyfit(x,y,1);
% Predicting values at given x values
yin=polyval(pp,xin);
% This is only for plotting the regression model
% Find the number of data points
n=length(x);
xplot=x(1):(x(n)-x(1))/10000:x(n);
yplot=polyval(pp,xplot);
%% DISPLAYING OUTPUTS
disp('  ')
disp('OUTPUTS')
disp('________________________')
disp('   xasked   ypredicted  ')
disp('________________________')
dataval=[xin;yin]';
disp(dataval)
disp('________________________')

xlabel('x');
ylabel('y');
title('y vs x ');
plot(x,y,'o','MarkerSize',5,'MarkerEdgeColor','b','MarkerFaceColor','b')
hold on
plot(xin,yin,'o','MarkerSize',5,'MarkerEdgeColor','r','MarkerFaceColor','r')
hold on
plot(xplot,yplot,'LineWidth',2)
legend('Points given','Points found','Regression Curve','Location','East')
hold off
disp('  ')

This post is brought to you by Holistic Numerical Methods: Numerical Methods for the STEM undergraduate at http://nm.mathforcollege.com, the textbook on Numerical Methods with Applications available from the lulu storefront, and the YouTube video lectures available at http://nm.mathforcollege.com/videos and http://www.youtube.com/numericalmethodsguy

Subscribe to the blog via a reader or email to stay updated with this blog. Let the information follow you.

How do I display the data of an array in MATLAB?

When I give a MATLAB project, I ask my students that the command window can only show output from disp and frprintf statements.  All other statement outputs need to be suppressed.  This is done to get an aesthetically pleasing report.  So what is a student supposed to do when you may have y vs x data and one needs to show it as an output, especially when the number of y vs x data points can change.

For example, we may have

x=[1  4  5   7 ]

y=[12  23  34  100]

How do I display this with just disp and fprintf statements?

  • The MATLAB program link is here.
  • The Hhttp://nm.mathforcollege.com/blog/displaying_arrays.mTML version of the MATLAB program is here.
  • DO NOT COPY AND PASTE THE PROGRAM BELOW BECAUSE THE SINGLE QUOTES DO NOT TRANSLATE TO THE CORRECT SINGLE QUOTES IN MATLAB EDITOR.  DOWNLOAD THE MATLAB PROGRAM INSTEAD

%% HOW DO I DO THAT IN MATLAB SERIES?
% In this series, I am answering questions that students have asked
% me about MATLAB.  Most of the questions relate to a mathematical
% procedure.

%% TOPIC
% How do I display arrays in MATLAB?

%% SUMMARY

% Language : Matlab 2008a;
% Authors : Autar Kaw and Jeremy Baker;
% Mfile available at
% http://nm.mathforcollege.com/blog/displaying_arrays.m;
% Last Revised : July 8, 2009;
% Abstract: This program shows you how to display arrays in MATLAB
clc
clear all

%% INTRODUCTION

disp(‘ABSTRACT’)
disp(‘   This program shows you how to display arrays’)
disp(‘ ‘)
disp(‘AUTHOR’)
disp(‘   Autar K Kaw of http://autarkaw.wordpress.com and Jeremy Baker’)
disp(‘ ‘)
disp(‘MFILE SOURCE’)
disp(‘   http://nm.mathforcollege.com/blog/displaying_arrays.m’)
disp(‘ ‘)
disp(‘LAST REVISED’)
disp(‘   July 8, 2009’)
disp(‘ ‘)

%% INPUTS
% Input x and y arrays, for example as y vs x data
x=[1  4  5   7 ];
y=[12  23  34  100];
%% DISPLAYING INPUTS METHOD 1
disp(‘INPUTS – Method 1’)
n=length(x);
fprintf(‘The number of data points is %g \n’,n)
disp(‘________________________’)
disp(‘  x-values    y values  ‘)
disp(‘________________________’)
for i=1:1:n
fprintf(‘      %g          %g \n’,x(i), y(i)’)
end
disp(‘________________________’)

%% DISPLAYING INPUTS METHOD 2
% Suggested by guest blogger Jeremy Baker
disp(‘  ‘)
disp(‘INPUTS – Method 2’)
n=length(x);
fprintf(‘The number of data points is %g \n’,n)
disp(‘________________________’)
disp(‘     x    y  ‘)
disp(‘________________________’)
dataval=[x;y]’;
disp(dataval)
disp(‘________________________’)

_____________________________________________

This post is brought to you by Holistic Numerical Methods: Numerical Methods for the STEM undergraduate at http://nm.mathforcollege.com, the textbook on Numerical Methods with Applications available from the lulu storefront, and the YouTube video lectures available at http://nm.mathforcollege.com/videos and http://www.youtube.com/numericalmethodsguy

Subscribe to the blog via a reader or email to stay updated with this blog. Let the information follow you.

How do I solve an initial value ODE in MATLAB?

Many students ask me how do I do this or that in MATLAB.  So I thought why not have a small series of my next few blogs do that.  In this blog, I show you how to solve an initial value ordinary differential equation.

  • The MATLAB program link is here.
  • The HTML version of the MATLAB program is here.
  • DO NOT COPY AND PASTE THE PROGRAM BELOW BECAUSE THE SINGLE QUOTES DO NOT TRANSLATE TO THE CORRECT SINGLE QUOTES IN MATLAB EDITOR.  DOWNLOAD THE MATLAB PROGRAM INSTEAD

%% HOW DO I DO THAT IN MATLAB SERIES?
% In this series, I am answering questions that students have asked
% me about MATLAB.  Most of the questions relate to a mathematical
% procedure.

%% TOPIC
% How do I solve an initial value ordinary differential equation?

%% SUMMARY

% Language : Matlab 2008a;
% Authors : Autar Kaw;
% Mfile available at
% http://nm.mathforcollege.com/blog/ode_initial.m;
% Last Revised : May 14, 2009;
% Abstract: This program shows you how to solve an
%           initial value ordinary differential equation.
clc
clear all

%% INTRODUCTION

disp(‘ABSTRACT’)
disp(‘   This program shows you how to solve’)
disp(‘   an initial value ordinary differential equation’)
disp(‘ ‘)
disp(‘AUTHOR’)
disp(‘   Autar K Kaw of http://autarkaw.wordpress.com’)
disp(‘ ‘)
disp(‘MFILE SOURCE’)
disp(‘   http://nm.mathforcollege.com/blog/ode_initial.m’)
disp(‘ ‘)
disp(‘LAST REVISED’)
disp(‘   May 14, 2009’)
disp(‘ ‘)

%% INPUTS
% Solve the ordinary differential equation 3y”+5y’+7y=11exp(-x)
% Define x as a symbol
syms x
%The ODE
ode_eqn=’3*D2y+5*Dy+7*y=11*exp(-13*x)’;
% The initial conditions
iv_1=’Dy(0)=17′;
iv_2=’y(0)=19′;
% The value at which y is sought at
xval=23.0;
%% DISPLAYING INPUTS

disp(‘INPUTS’)
func=[‘  The ODE to be solved is ‘ ode_eqn];
disp(func)
iv_explain=[‘  The initial conditions are ‘ iv_1 ‘    ‘ iv_2];
disp(iv_explain)
fprintf(‘  The value of y is sought at x=%g’,xval)
disp(‘  ‘)

%% THE CODE

% Finding the solution of the ordinary differential equation
soln=dsolve(ode_eqn,iv_1,iv_2,’x’);
% vpa below uses variable-precision arithmetic (VPA) to compute each
% element of soln to 5 decimal digits of accuracy
soln=vpa(soln,5);

%% DISPLAYING OUTPUTS
disp(‘  ‘)
disp(‘OUTPUTS’)
output=[‘  The solution to the ODE is ‘ char(soln)];
disp(output)
value=subs(soln,x,xval);
fprintf(‘  The value of y at x=%g is %g’,xval,value)
disp(‘  ‘)

This post is brought to you by Holistic Numerical Methods: Numerical Methods for the STEM undergraduate at http://nm.mathforcollege.com, the textbook on Numerical Methods with Applications available from the lulu storefront, and the YouTube video lectures available at http://nm.mathforcollege.com/videos and http://www.youtube.com/numericalmethodsguy

Subscribe to the blog via a reader or email to stay updated with this blog. Let the information follow you.

How do I solve a nonlinear equation that needs to be setup in MATLAB?

Many students ask me how do I do this or that in MATLAB. So I thought why not have a small series of my next few blogs do that. In this blog, I show you how to solve a nonlinear equation that needs to be set up.

For example to find the depth ‘x’ to which a ball is floating in water is based on the following cubic equation
4*R^3*S=3*x^2*(R-x/3)
where
R= radius of ball
S= specific gravity of ball
So how do we set this up if S and R are input values?

The MATLAB program link is here.

The HTML version of the MATLAB program is here.

%% HOW DO I DO THAT IN MATLAB SERIES?
% In this series, I am answering questions that students have asked
% me about MATLAB.  Most of the questions relate to a mathematical
% procedure.

%% TOPIC
% How do I solve a nonlinear equation if I need to set it up?

%% SUMMARY

% Language : Matlab 2008a;
% Authors : Autar Kaw;
% Mfile available at
% http://nm.mathforcollege.com/blog/integration.m;
% Last Revised : March 28, 2009;
% Abstract: This program shows you how to solve a nonlinear equation
% that needs to set up as opposed that is just given to you.
clc
clear all

%% INTRODUCTION

disp(‘ABSTRACT’)
disp(‘   This program shows you how to solve’)
disp(‘   a nonlinear equation that needs to be setup’)
disp(‘ ‘)
disp(‘AUTHOR’)
disp(‘   Autar K Kaw of http://autarkaw.wordpress.com’)
disp(‘ ‘)
disp(‘MFILE SOURCE’)
disp(‘   http://nm.mathforcollege.com/blog/nonlinearequation.m’)
disp(‘ ‘)
disp(‘LAST REVISED’)
disp(‘   April 17, 2009’)
disp(‘ ‘)

%% INPUTS
% Solve the nonlinear equation where you need to set up the equation
% For example to find the depth ‘x’ to which a ball is floating in water
% is based on the following cubic equation
% 4*R^3*S=3*x^2*(R-x/3)
% R= radius of ball
% S= specific gravity of ball
% So how do we set this up if S and R are input values

S=0.6
R=0.055
%% DISPLAYING INPUTS
disp(‘INPUTS’)
func=[‘  The equation to be solved is 4*R^3*S=3*x^2*(R-x/3)’];
disp(func)
disp(‘  ‘)

%% THE CODE
% Define x as a symbol
syms x
% Setting up the equation
C1=4*R^3*S
C2=3
f=[num2str(C1) ‘-3*x^2*(‘ num2str(R) ‘-x/3)’]
% Finding the solution of the nonlinear equation
soln=solve(f,x);
solnvalue=double(soln);

%% DISPLAYING OUTPUTS

disp(‘OUTPUTS’)
for i=1:1:length(solnvalue)
fprintf(‘\nThe solution# %g is %g’,i,solnvalue(i))
end
disp(‘  ‘)

This post is brought to you by Holistic Numerical Methods: Numerical Methods for the STEM undergraduate at http://nm.mathforcollege.com, the textbook on Numerical Methods with Applications available from the lulu storefront, and the YouTube video lectures available at http://nm.mathforcollege.com/videos and http://www.youtube.com/numericalmethodsguy

Subscribe to the blog via a reader or email to stay updated with this blog. Let the information follow you.

How do I solve a nonlinear equation in MATLAB?

Many students ask me how do I do this or that in MATLAB.  So I thought why not have a small series of my next few blogs do that.  In this blog, I show you how to solve a nonlinear equation.

The MATLAB program link is here.

The HTML version of the MATLAB program is here.

%% HOW DO I DO THAT IN MATLAB SERIES?
% In this series, I am answering questions that students have asked
% me about MATLAB.  Most of the questions relate to a mathematical
% procedure.

%% TOPIC
% How do I solve a nonlinear equation?

%% SUMMARY

% Language : Matlab 2008a;
% Authors : Autar Kaw;
% Mfile available at
% http://nm.mathforcollege.com/blog/integration.m;
% Last Revised : March 28, 2009;
% Abstract: This program shows you how to solve a nonlinear equation.
clc
clear all

%% INTRODUCTION

disp(‘ABSTRACT’)
disp(‘   This program shows you how to solve’)
disp(‘   a nonlinear equation’)
disp(‘ ‘)
disp(‘AUTHOR’)
disp(‘   Autar K Kaw of http://autarkaw.wordpress.com’)
disp(‘ ‘)
disp(‘MFILE SOURCE’)
disp(‘   http://nm.mathforcollege.com/blog/nonlinearequation.m’)
disp(‘ ‘)
disp(‘LAST REVISED’)
disp(‘   April 11, 2009’)
disp(‘ ‘)

%% INPUTS
% Solve the nonlinear equation x^3-15*x^2+47*x-33=0
% Define x as a symbol
syms x
% Assigning the fleft hand side o the equation f(x)=0
f=x^3-15*x^2+47*x-33;
%% DISPLAYING INPUTS

disp(‘INPUTS’)
func=[‘  The equation to be solved is ‘ char(f), ‘=0’];
disp(func)
disp(‘  ‘)

%% THE CODE

% Finding the solution of the nonlinear equation
soln=solve(f,x);
solnvalue=double(soln);

%% DISPLAYING OUTPUTS

disp(‘OUTPUTS’)
for i=1:1:length(solnvalue)
fprintf(‘\nThe solution# %g is %g’,i,solnvalue(i))
end
disp(‘  ‘)

This post is brought to you by Holistic Numerical Methods: Numerical Methods for the STEM undergraduate at http://nm.mathforcollege.com, the textbook on Numerical Methods with Applications available from the lulu storefront, and the YouTube video lectures available at http://nm.mathforcollege.com/videos and http://www.youtube.com/numericalmethodsguy

Subscribe to the blog via a reader or email to stay updated with this blog. Let the information follow you.

How do I integrate a discrete function in MATLAB?

Many students ask me how do I do this or that in MATLAB.  So I thought why not have a small series of my next few blogs do that.  In this blog, I show you how to integrate a discrete function.

The MATLAB program link is here.

The HTML version of the MATLAB program is here.

_____________________________________________________

%% HOW DO I DO THAT IN MATLAB SERIES?
% In this series, I am answering questions that students have asked
% me about MATLAB.  Most of the questions relate to a mathematical
% procedure.

%% TOPIC
% How do I integrate a discrete function?  Three cases of data are
% discussed.

%% SUMMARY

% Language : MATLAB 2008a;
% Authors : Autar Kaw;
% Mfile available at
% http://nm.mathforcollege.com/blog/integrationdiscrete.m;
% Last Revised : April 3, 2009;
% Abstract: This program shows you how to integrate a given discrete function.

clc
clear all

%% INTRODUCTION

disp(‘ABSTRACT’)
disp(‘   This program shows you how to integrate’)
disp(‘   a discrete function’)
disp(‘ ‘)
disp(‘AUTHOR’)
disp(‘   Autar K Kaw of http://autarkaw.wordpress.com’)
disp(‘ ‘)
disp(‘MFILE SOURCE’)
disp(‘   http://nm.mathforcollege.com/blog/integrationdiscrete.m’)
disp(‘ ‘)
disp(‘LAST REVISED’)
disp(‘   April 3, 2009’)
disp(‘ ‘)

%% CASE 1

%% INPUTS

% Integrate the discrete function y from x=1 to 6.5
% with y vs x data given as (1,2), (2,7), (4,16), (6.5,18)
% Defining the x-array
x=[1  2  4  6.5];
% Defining the y-array
y=[2  7  16  18];

%% DISPLAYING INPUTS
disp(‘____________________________________’)
disp(‘CASE#1’)
disp(‘LOWER LIMIT AND UPPER LIMITS OF INTEGRATION MATCH x(1) AND x(LAST)’)
disp(‘ ‘)
disp(‘INPUTS’)
disp(‘The x-data is’)
x
disp(‘The y-data is’)
y
fprintf(‘  Lower limit of integration, a= %g’,x(1))
fprintf(‘\n  Upper limit of integration, b= %g’,x(length(x)))
disp(‘ ‘)

%% THE CODE

intvalue=trapz(x,y);

%% DISPLAYING OUTPUTS

disp(‘OUTPUTS’)
fprintf(‘  Value of integral is = %g’,intvalue)
disp(‘  ‘)
disp(‘___________________________________________’)

%% CASE 2

%% INPUTS

% Integrate the discrete function y from x=3 to 6
% with y vs x data given as (1,2), (2,7), (4,16), (6.5,18)
% Defining the x-array
x=[1  2  4  6.5];
% Defining the y-array
y=[2  7  16  18];
% Lower limit of integration, a
a=3;
% Upper limit of integration, b
b=6;
%% DISPLAYING INPUTS

disp(‘CASE#2’)
disp(‘LOWER LIMIT AND UPPER LIMITS OF INTEGRATION DO not MATCH x(1) AND x(LAST)’)
disp(‘  ‘)
disp(‘INPUTS’)
disp(‘The x-data is’)
x
disp(‘The y-data is’)
y
fprintf(‘  Lower limit of integration, a= %g’,a)
fprintf(‘\n  Upper limit of integration, b= %g’,b)
% Choose how many divisions you want for splining from a to b
n=1000;
fprintf(‘\n  Number of subdivisions used for splining = %g’,n)
disp(‘  ‘)
disp(‘  ‘)

%% THE CODE

xx=a:(b-a)/n:b;
% Using spline to approximate the curve from x(1) to x(last)
yy=spline(x,y,xx);
intvalue=trapz(xx,yy);

%% DISPLAYING OUTPUTS

disp(‘OUTPUTS’)
fprintf(‘  Value of integral is = %g’,intvalue)
disp(‘  ‘)
disp(‘___________________________________________’)
%% CASE 3

%% INPUTS

% Integrate the discrete function y from x=1 to 6.5
% with y vs x data given as (1,2), (4,16), (2,7), (6.5,18)
% The x-data is not in ascending order
% Defining the x-array
x=[1  4   2 6.5];
% Defining the y-array
y=[2  16  7 18];
% Lower limit of integration, a
a=3;
% Upper limit of integration, b
b=6;
%% DISPLAYING INPUTS

disp(‘CASE#3’)
disp(‘LOWER LIMIT AND UPPER LIMITS OF INTEGRATION DO not MATCH x(1) AND x(LAST) ‘)
disp(‘AND X-DATA IS NOT IN ASCENDING OR DESCENDING ORDER’)
disp(‘   ‘)
disp(‘INPUTS’)
disp(‘The x-data is’)
x
disp(‘The y-data is’)
y
fprintf(‘  Lower limit of integration, a= %g’,a)
fprintf(‘\n  Upper limit of integration, b= %g’,b)
% Choose how many divisions you want for splining from a to b
n=1000;
fprintf(‘\n  Number of subdivisions used for splining = %g’,n)
disp(‘  ‘)
disp(‘  ‘)

%% THE CODE
[x,so] = sort(x); % so is the sort order
y = y(so); % y data is now in same order as x data
xx=a:(b-a)/n:b;
% Using spline to approximate the curve from x(1) to x(last)
yy=spline(x,y,xx);
intvalue=trapz(xx,yy);

%% DISPLAYING OUTPUTS

disp(‘OUTPUTS’)
fprintf(‘  Value of integral is = %g’,intvalue)
disp(‘  ‘)

____________________________________________________________

This post is brought to you by Holistic Numerical Methods: Numerical Methods for the STEM undergraduate at http://nm.mathforcollege.com, the textbook on Numerical Methods with Applications available from the lulu storefront, and the YouTube video lectures available at http://nm.mathforcollege.com/videos and http://www.youtube.com/numericalmethodsguy

Subscribe to the blog via a reader or email to stay updated with this blog. Let the information follow you.

How do I integrate a continuous function in MATLAB

Many students ask me how do I do this or that in MATLAB.  So I thought why not have a small series of my next few blogs do that.  In this blog I show you how to integrate a continuous function.

The MATLAB program link is here.

The HTML version of the MATLAB program is here.

___________________________________________

%% HOW DO I DO THAT IN MATLAB SERIES?
% In this series, I am answering questions that students have asked
% me about MATLAB.  Most of the questions relate to a mathematical
% procedure.

%% TOPIC
% How do I integrate a continuous function?

%% SUMMARY

% Language : Matlab 2008a;
% Authors : Autar Kaw;
% Mfile available at
% http://nm.mathforcollege.com/blog/integration.m;
% Last Revised : March 28, 2009;
% Abstract: This program shows you how to integrate a given function.
clc
clear all

%% INTRODUCTION

disp(‘ABSTRACT’)
disp(‘   This program shows you how to integrate’)
disp(‘   a given function ‘)
disp(‘ ‘)
disp(‘AUTHOR’)
disp(‘   Autar K Kaw of http://autarkaw.wordpress.com’)
disp(‘ ‘)
disp(‘MFILE SOURCE’)
disp(‘   http://nm.mathforcollege.com/blog/integration.m’)
disp(‘ ‘)
disp(‘LAST REVISED’)
disp(‘   March 29, 2009’)
disp(‘ ‘)

%% INPUTS

% Integrate exp(x)*sin(3*x) from x=2.0 to 8.7
% Define x as a symbol
syms x
% Assigning the function to be differentiated
y=exp(x)*sin(3*x);
% Assigning the lower limit
a=2.0;
% Assigning the upper limit
b=8.7;

%% DISPLAYING INPUTS

disp(‘INPUTS’)
func=[‘  The function is to be integrated is ‘ char(y)];
disp(func)
fprintf(‘  Lower limit of integration, a= %g’,a)
fprintf(‘\n  Upper limit of integration, b= %g’,b)
disp(‘  ‘)
disp(‘  ‘)

%% THE CODE

% Finding the integral using the int command
% Argument 1 is the function to be integrated
% Argument 2 is the variable with respect to which the
%    function is to be integrated – the dummy variable
% Argument 3 is the lower limit of integration
% Argument 4 is the upper imit of integration
intvalue=int(y,x,a,b);
intvalue=double(intvalue);

%% DISPLAYING OUTPUTS

disp(‘OUTPUTS’)
fprintf(‘  Value of integral is = %g’,intvalue)
disp(‘  ‘)

_________________________________________________________

This post is brought to you by Holistic Numerical Methods: Numerical Methods for the STEM undergraduate at http://nm.mathforcollege.com, the textbook on Numerical Methods with Applications available from the lulu storefront, and the YouTube video lectures available at http://nm.mathforcollege.com/videos and http://www.youtube.com/numericalmethodsguy

Subscribe to the blog via a reader or email to stay updated with this blog. Let the information follow you.

MATLAB code for the efficient automatic integrator

In the previous post, we discussed why doubling the number of segments in the automatic integrator based on multiple-segment trapezoidal rule is more efficient than increasing the number of segments one at a time. But this advantage involves having to store the individual function values from previous calculations and then having to retrieve them properly. This drawback was circumvented very efficiently by using the formula derived in another previous post where there is no need to store individual function values.

The matlab file for finding a definite integral by directly using the multiple segment trapezoidal rule from this post is given here (matlab file, html file), while the matlab file that uses the more efficient formula from this post is given here (matlab file, html file).  Here are the inputs to the programs.

% a = Lower limit of integration
% b = Upper limit of integration
%  nmax = Maximum number of segments
% tolerance = pre-specified tolerance in percentage
% f = inline function as integrand

a=5.3;
b=10.7;
nmax=200000;
tolerance=0.000005;
f=inline(‘exp(x)*sin(2*x)’)

We ran both the program on a PC and found that the more efficient algorithm (51 seconds) ran in half the time as the other one (82 seconds).  This is expected, as only n function evaluations are made for 2n-segments rule with the efficient formula, while 2n+1 functions evaluations are made for the original formula.

This post is brought to you by Holistic Numerical Methods: Numerical Methods for the STEM undergraduate at http://nm.mathforcollege.com, the textbook on Numerical Methods with Applications available from the lulu storefront, and the YouTube video lectures available at http://www.youtube.com/numericalmethodsguy.

Subscribe to the blog via a reader or email to stay updated with this blog. Let the information follow you.